Google
 

8 Kasım 2007 Perşembe

retina


kornea ve mercekten kırılarak geçen ışınların düştüğü tabaka, diğer bir deyimle görüntünün oluştuğu bölgedir. Buraya düşen görüntü elektrik sinyallerine çevrilerek beyne gönderilir.
Kamera için film ne demekse göz için de retina aynı anlamı taşır. Tıpkı fotoğraf filminin objektifin arkasında bulunması gibi, retina gözün arkasında bulunur ve odaklanan nesnenin görüntüsü burada oluşur. Fotoğraf makinelerinde bir imajın görüntüsü kaydedildikten sonra film bir sonraki kareye geçer. Buna karşın üzerine her an farklı bir görüntü düşen retinanın değiştirilmesine gerek yoktur çünkü kendi kendini yeniler. İnsanın yaşamı boyunca oluşan, sayılamayacak kadar farklı imajı, eskimeden ve bozulmadan görüntüler, üstelik bir ömür boyu kullanılır.10
Göze giren ışık sırasıyla kornea, göz bebeği ve göz merceğini geçtikten sonra retinaya düşer. Burada bulunan ve çok karmaşık elektronik devreleri andıran hücreler, ışığı elektrik sinyallerine çevirerek beyine gönderirler. Işık enerjisinin belirli şiddetlerdeki elektrik enerjisine dönüştürülmesini ve bu sayede beyinde görüntü oluşması sağlayan sistem son derece karmaşık ve gelişmiştir. Böyle bir tasarım ise Allah'ın kusursuz yaratışını kanıtlar.
Retinanın yapısı ise oldukça ilginçtir. Retinadaki hücreler üstüste yerleşerek son derece ince, 11 ayrı tabaka oluştururlar. Görüntünün düştüğü nokta 9. kattadır. Bu noktanın çapı yaklaşık 1 milimetredir. İnsan bir bakışta kilometrelerce karelik alanı bu nokta üzerinde görür. İnsanın bütün dünyasının bu küçücük alan üzerinde oluştuğu, bugüne kadar gördüğü herşeyin varlığının bu küçük alan sayesinde algılandığı ve bu noktanın da sonuçta çok küçük bir et parçası olduğu gerçeği hiç unutulmamalıdır.
Retinanın arka tarafında, ışığı algılayan çubuk ve koni hücreleri bulunur. Bu iki tip hücrenin görevi, üzerlerine düşen ışığı elektrik sinyallerine çevirmektir. Mikroskop altındaki biçimleri nedeniyle bu isimlerle adlandırılırlar. Çubuk hücrelerin sayısı 120 milyon, konilerin sayısı 6 milyondur. Yani gözde bir koni hücresine karşılık 20 çubuk hücresi vardır.
Sadece dış görünüşleri ve sayıları değil, bu hücrelerin algılama şekilleri de farklıdır. Çubuk hücreleri hafif ışığa bile yanıt verebilirler. Koni hücrelerinin çalışabilmeleri için ise daha güçlü ışık gerekir.
Çubuk hücreler yalnızca ışığa karşı duyarlıdır. Yani nesnelerden gelen ışığa göre ancak siyah-beyaz bir görüntü oluştururlar. Çubuk hücreleri az ışıkta bile görev yapabilecek kadar duyarlıdırlar. Ancak nesnelerin ayrıntılarını çözümleyip, renklerini saptamazlar.
Gece yıldızlara bakarken ya da karanlık bir sinemada koltuk bulmaya çalışırken gözümüzün retinasındaki çubuk hücrelerin sağladıkları görüntü sayesinde hareket ederiz. Retinadaki çubuklar yalnızca ışığa karşı hassas oldukları için oluşan görüntüde sadece şekiller belirgindir, renkler ise belirgin olmaz. Bu yüzden karanlıkta bütün nesneler siyah ve grinin tonları şeklinde algılanır.11
Yukarıdaki satırlarda, koni ve çubuk hücrelerinin ışık enerjisini elektrik enerjisine çevirdiklerinden bahsettik. Bu çevrim son derece karmaşık bir olaydır. Bu mucizevi işlem nasıl gerçekleşir? Niçin, nasıl ve hangi mantıkla bir hücre ışık enerjisini elektrik enerjisine çevirir? Bu bilgiye nasıl sahip olmuştur? Sahip olduğu yapısal özellikleri -ki bu son derece özel bir yapıdır- nasıl kazanmıştır? Dahası enerji dönüşümü yapabilmelerinin ötesinde bu hücreler renk ve şekil gibi kavramlara göre iş bölümüne sahiptirler. Bu kadar özel bir yapı ve iş bölümünü hücreler nasıl gerçekleştirmişlerdir?
Bir koni veya çubuk hücresi tek başına hiçbir işe yaramaz. Hatta bu hücrelerin binlercesinin birarada bulunması da hiçbirşey ifade etmez. Bu hücrelerin muhteşem bir planlama sonucunda retina üzerine özel olarak yerleştirilmeleri, kendilerini beyine bağlayacak sinir yollarına, üzerlerine ışığı düşürecek mercek, kornea gibi organellere, kendilerini besleyecek bir kılcal damar ağına sahip olmaları gerekir. Bütün bunların yanında eğer gönderdikleri sinyalleri çözecek bir beyin olmasa varlıklarının hiçbir anlamı olmaz. Üstelik insan ilk ortaya çıktığından beri bu sistem eksiksiz olarak var olmalıdır. İlk insandaki daha sonra yaşamış olan bütün insanlardaki retina da bu özelliklere sahiptir. Şu anda çevrenizde gördüğünüz insanların gözlerindeki retina hücreleri de bu bilgilere sahiptir.
Işığı elektrik enerjisine çevirebilme yeteneğine sahip tek bir hücrenin olması bile büyük bir mucize iken, bu hücreden milyonlarcasının bir düzen içinde bulunmaları ve ortak bir amaca hizmet etmeleri çok daha büyük bir mucizedir. Korneada bulunan milyonlarca koni ve çubuk hücresinin gözün diğer organelleri ve beyin ile birlikte Allah tarafından yaratıldıkları çok açıktır. Allah insanı kusursuz bir düzen içinde yaratmıştır. Kendisinden başka ilah olmadığını Allah bir ayetinde şöyle bildirmiştir:
O, Hayy (diri) olandır. O'ndan başka ilah yoktur; öyleyse dini yalnızca kendisine halis kılanlar olarak O'na dua edin. Alemlerin Rabbine hamdolsun. (Mümin Suresi, 65)
Retinanın Dört Algısı
Retinanın uyarılması sonucunda görüntü hakkında dört tip özellik algılanır. Bunlar ışık, kontrast, şekil ve renktir.
- Işık:
Çubuk hücreleri düşük şiddette ışığı koni hücrelerinden daha iyi algılarlar. Örneğin alacakaranlıkta çubuk hücreleri sayesinde görürüz. Parlak ışıkta ise koniler devreye girerler. Gece gören hayvanlarda bu yüzden çubuk hücreleri çok daha fazladır.
- Şekil:
Cisimlerin şeklini algılamada önemli rolü koni hücreleri oynar. Şekil hissi keskinliği, konilerin birbirine yakın olarak yer aldığı fovea adlı noktada en yoğundur.
- Kontrast:
Kesin sınırlarla ayrılmamış bölgeler arasındaki küçük aydınlatma değişikliklerini algılama yeteneği son derece önemlidir. Birçok hastalıkta kontrast duyarlılığı kaybı görülür ve bu durum hastayı görme keskinliği kaybından daha fazla rahatsız eder.
- Renk:
Işığın farklı dalga boylarının beyin tarafından ayrı ayrı yorumlanması sonucunda renk kavramı doğar. Gözün içinde bulunan ışık alıcısı retina, dalga boylarını ayırt ederek renkleri görmemizi mümkün kılar.
Retinanın, ışığı elektrik sinyallerine dönüştürmesi başlı başına bir mucizedir. Ama retinadaki mucizeler bu kadarla bitmez. Retinada oluşan görüntünün beyne ulaştırılmasında izlenen yöntem tek başına ele alındığında da son derece hayret verici detaylarla karşılaşılır. Retina, üzerinde oluşan görüntüyü bir bütün olarak beyne iletmez. Önce parçalara ayırır, daha sonra bu parçalar beyinde birleştirilir. Bakılan cismin sol tarafına ait görüntü retinanın sağ tarafına, sağ tarafına ait görüntü ise retinanın sol tarafına düşer. Parçalar saniyenin onda biri kadar kısa bir sürede, ayrı ayrı beyne gönderilip burada yorumlanır. Bunlar retinada meydana gelen olayların çok kısa bir özetidir.
Detaylardaki mucizelere şahit olmak için retinayı daha yakından inceleyelim. Kişinin bir cismi görebilmesi için göze giren ışık enerjisinin sinir uyarılarına dönüştürülmesi zorunludur. Işınlar, görmeyle sonuçlanan kimyasal ve elektriksel reaksiyonları başlatıcı fiziksel bir uyarıya sebep olurlar. Ortaya çıkacak tepkimeler zinciri, koni ve çubuklarda "rodopsin" olarak adlandırılan ve kökeninde A vitamini bulunan bir pigmentin varlığına bağlıdır.
Ağ tabakaya çarpan ışık, rodopsinin renksizleşmesine neden olur. Bu renksizleşme sonucunda sinir hücrelerini uyarma özelliği olan kimyasal bir madde açığa çıkar. Yoğun ışıkta özelliğini yitiren rodopsin, karanlıkta yeniden oluşur.
Karanlık bir salona girildiği zaman kısa bir süre için görme olmaz. Bunun nedeni gözlerde o an yeterli rodopsin oluşmamasıdır. Bu maddenin yeniden sentezlenmesi ile görme tekrar netleşir. Yeteri kadar rodopsin üretilene kadar göz karanlıkta net göremez. Rodopsin dengesinin kurulması ile şekiller gittikçe daha belirginleşir.
Karanlıktan tekrar parlak ışığa geçildiği zaman rodopsin birdenbire beyne çok miktarda ışık gönderir ve görüş parlaklaşır. Şiddetli ışıkta rodopsinin parçalanması sentezlenmesinden çok daha hızlı olduğu için görmede aksaklık olur. Örneğin güneşli ve karlı havada oluşan göz kamaşmasının nedeni rodopsindir. Rodopsinin çoğu deforme olduktan sonra, beyne daha az sinyal gönderilmeye başlanır ve gözler ışığa adapte olur.12
Rodopsinin özelliği yukarıda belirtildiği gibi ışıktan alınan verimi yükseltmesidir. Bu madde tam ihtiyaç duyulan anda gerektiği kadar üretilir. Gözdeki diğer yapılarla birlikte hareket ederek görmeyi kolaylaştırır. Peki bu maddenin üretilmesine ilk olarak kim karar vermiştir? Bir zamanlar karanlıkta göremeyen göz hücreleri kendi aralarında toplanıp, "gelin karanlıkta öyle bir madde üretelim ki bu, ışığın verimini artırsın, bu sayede beyinde yeterli bir görüntü oluşsun, tekrar ışığa çıkıldığında da bu madde özelliğini kendi kendine kaybetsin" diye bir karar mı aldılar? Bu kararın alındığını var sayalım. Rodopsinin fiziksel ve kimyasal yapısını kim dizayn etti? Rodopsine ait genetik bilgiler göz hücrelerine nasıl yerleştirildi?
Burada çok kısaca özetlediğimiz görme işleminin aslında çok daha karmaşık detayları vardır. Ancak sadece rodopsinin görme üzerindeki etkisi bile gözün ne kadar muhteşem bir sistemle yaratılmış olduğunu anlamak için yeterlidir. Bütün bunları hücrelerin kendi kendilerine yapamayacakları açıktır. Gözün içindeki bu son derece iyi hesaplanmış sistemi yaratan Allah'tır.
Ana Renkler
Koni hücrelerinin renkleri algıladıklarına daha önce değindik. Işığın belli renklerine özellikle yoğun biçimde reaksiyon veren üç ana koni grubu bulunmakta olup bunlar mavi, yeşil ve kırmızı koniler olarak sınıflandırılırlar.
Kırmızı, mavi ve yeşil, doğada bulunan üç ana renktir. Bu renklerin farklı kombinasyonlarda ve tonlarda biraraya gelmeleri sonucunda diğer renkler oluşur. Kırmızı ve yeşil renk karıştırıldığında ortaya sarı renk çıkar. Pigment hücreleri de bu temel fizik kuralına göre çalışırlar; kırmızıya ve yeşile duyarlı olan konilerin eşit ölçüde uyarılmaları sarı renk algısını yaratır. Kırmızı, mavi, yeşil konilerin eşit uyarılması beyaz renk algısını yaratır. Üç ana rengi algılayan hücrelerin farklı şiddetlerde ve kombinasyonlarda uyarılmaları ile insan hayatındaki bütün renkler ortaya çıkar. Yalnız buraya kadar anlatılanlar retina ile ilgili bölümü kapsar ve bir teori olmaktan öteye gitmez. Kaldı ki beynin gelen sinyalleri nasıl deşifre ettiği halen bilinmemektedir.
Görüldüğü gibi renkleri ayırt etmek son derece karmaşık bir iştir. Eğer günümüz teknolojisinden bir örnek verirsek bu işlemin zorluğu daha iyi anlaşılacaktır. Renkli televizyon ekranları da tıpkı gözdeki sisteme benzer bir şekilde çalışır. Farklı dalga boylarındaki renkler yanyana yakın bir oranla yerleştirilirler. Eğer televizyon ekranından alınan bir resme yakından bakılacak olursa görüntünün kırmızı, yeşil ve mavi renklerde çok küçük alanların birleşmesinden oluştuğu görülür. Biraz geriden bakıldığında renkler tekrar birleşir ve ekrandaki normal renkler ortaya çıkar.
Yukardaki satırlardan anlaşıldığı gibi şu anda sahip olduğunuz görüntünün oluşabilmesi için son derece karmaşık renk ayarlarının yapılması gerekir. Milyonlarca koni hücresinin gönderdiği sinyallerin şiddeti ayarlanmalı, daha sonra bu sinyaller deşifre edilmelidir. Üstelik bu işlem tek bir an ya da bir saat için, tek bir insan ya da binlerce, yüzlerce kişi için yapılmaz. Her insan, hayatı boyunca milyarlarca görüntüyle karşılaşır ve sürekli olarak bu görüntülere ait renk ayarı yapılır.
Görme Keskinliği
Nokta büyüklüğünde bir toz taneciğine veya yüksek bir tepeden uçsuz bucaksız bir manzaraya bakın hiç fark etmez. Binlerce kilometrenin de, birkaç milimetrenin de görüntüsü retina üzerindeki 1 milimetrekare genişliğinde, sarımtrak bir bölge (macula lutea) üzerine düşer.13
Bu bölgenin çapı yarım milimetreden (0.4 mm.) daha küçük olan merkez bölümünde retina incelmiştir ve hafif bir çukurluk gösterir. Bu yere sarı nokta (fovea centralis) adı verilir. Burası görüntünün en net olduğu merkezdir. Bu alan tamamen koni hücrelerinden oluşur. Bilindiği gibi koniler görüntünün ayrıntılarını görmeye yarayan özel bir yapıya sahiptirler. Görüntü içindeki yüzlerce renk, şekil ve derinlik bu küçücük bölgede en keskin halini alır. Foveanın dışında görme keskinliği 5-10 kat düşer.
Bir cisme dikkatle bakıldığında, gözler bu cisimden gelen ışınları fovea üzerine düşürecek şekilde hareket ederler. Gözün hareketli olması da buna yardımcı olur.
Maksimum göz keskinliğine sahip bir kişi, iğne ucu kadar parlak iki nokta arasındaki bir milimetrelik mesafeyi on metreden algılayabilir.

Hiç yorum yok: